Gene Therapy for Xeroderma Pigmentosum Cockayne Syndrome (XP-CS) and XP- Neurological Disease (XP-ND)

XPFSG Medical Conference 2022 Christina A. Pacak, Ph.D. Assistant Professor Neurology Department

UNIVERSITY OF MINNESOTA Driven to Discover®

Outline:

- UMN DNA Repair Disorder Gene Therapy Program
- Gene Therapy 101
- Pre-clinical gene therapy development in a mouse model of XPG deficiency
- Future directions

UMN Gene Therapy Program

Iris Gonzales

Gene Therapy

- Gene delivery delivery of a healthy version of cDNA into cells with a missing or defective version
- Genome editing delivery of genetic components needed to edit the genome directly (many different versions exist). The approach taken depends upon the genetic variant

Similar Challenges Exist

• Either approach requires the ability to deliver genetic material

Gene Therapy – Gene Delivery

 Gene delivery – delivery of a healthy version of cDNA into cells with a missing or defective version

STOP CODON early in the gene

Gene Therapy – Genome Editing

 Genome editing – delivery of genetic components needed to edit the genome directly (many different versions exist). The approach taken depends upon the genetic variant

Gene Therapy (Gene Delivery) - Our goals:

- Long-term expression
- Focus on neurological tissues but would be wonderful to treat skin or other targets as well avoid the liver
- Ameliorate the disease phenotype and improve quality of life
- Minimal effective dose
- Patient safety

Gene Delivery Vehicles

Many exist (plasmid delivery systems, retroviruses, lentiviruses, adenoviruses, adeno-associated viruses, extracellular vesicles) and all have strengths and limitations

Adeno-associated virus (AAV)

Adeno-Associated Virus (AAV)

- Discovered as a contaminant in adenovirus preparations requires help for replication
- Recombinant AAV (rAAV) used for gene therapy lacks elements necessary for replication

Humoral Immunity to AAV Vectors in Gene Therapy: Challenges and Potential Solutions June 27, 2013. Elisa Masat, Giulia Pavani, Federico Mingozzi

General AAV Attributes

- rAAV persists as an episome within the nucleus stable for many years *in vivo* in non-dividing cells and eventually diluted out in dividing cells
- Integration into the genome is extremely rare
- This has implications for treating a target like skin

Control of Expression – Many Layers of Optimization

- Capsid serotype
- Vector sequence design
- Dose
- Delivery route

Control of Expression - Capsid Serotype Selection

- Many natural and engineered serotype options different AAV capsids have different tissue tropisms
- Capsid choice influences many things: AAV packaging, receptor binding preferences, efficiencies can be destroyed or enhanced, tendency for degradation pathways depending upon receptor, trigger host immune response

Control of Expression – Vector Sequence Design

- Promoter choice: Can be general or tissue restrictive
- Codon optimization (human coERCC5)

Control of Expression – Dose

• Dosage studies guide how much is needed to achieve a therapeutic effect (start low and go higher) (MED)

Gene Therapy Risks

- Risk tolerance of patient and family depends upon many things – gene therapy cannot be undone.
- Clinical trials determine how safe and effective a therapy is at relieving symptoms or treating aspects of a condition.
- Informed consent is essential
 - May or may not provide benefit
 - May or may not be exposed to unknown risks
- Even approved gene therapies can carry risk due to immune responses

AAV Gene Therapy Successes

- Luxturna FDA approved therapy for inherited retinal disease (Biallelic RPE65 mutation-associated retinal dystrophy)
- Zolgensma FDA approved therapy for spinal muscular atrophy (SMA).

(Watching these patients to understand therapeutic durability)

Pre-Clinical Gene Therapy Studies (XP-CS, XP-ND, CS, TTD, etc.)

- Model development: mice, induced pluripotent stem cells (iPSCs) differentiated into neurological cells and organoids
- Gene therapy optimization (general for the program):
 - AAV capsids
 - Promoters
 - Delivery routes
 - Doses
- Gene therapy for XPG deficiency (ERCC5) good mouse model of XP-CS

XPG/ERCC5

- · Wide range of clinical phenotypes
- XPG mutations that lead exclusively to XP symptoms are deficient in NER
- XPG likely has important role/s outside of NER
- May play an important function in RNA polymerase II transcription (the XPG homologue Rad2 in *S. cerevisiae* does) through TFIIH

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721477/

Gene Therapy for XP-CS: Experiment 1 - IV administrations

• Xpg^{-/-} mouse model IV delivery of AAV-*ERCC5*

Silveli Suzuki-Hatano, Audrey Daugherty

XPG Experiment 1 (IV) Conclusions:

- Gene therapy can have a beneficial effect in XP-CS (delayed onset of neurological phenotypes and improved survival)
- However Doses are too high

Gene Therapy for XP-CS: Experiment 1 - IT administrations

• Xpg^{-/-} mouse model IT delivery of AAV-*ERCC5*

Monika Chauhan, Ellie Khadir, Audrey Daugherty

XPG Experiment 2 (IT) Conclusions

- Delayed onset (prevention) of some aspects of neurological phenotypes
- Some improvement in survival

Will use this information to guide further optimizations (delivery route, promoter, capsids)

Ongoing Work!

Therapies and clinical trials

A good gene therapy resource...

 American Society of Gene and Cell Therapy website (ASGCT.org – patient education)

Thank you!

Thanks to those participating in research studies!

<u>Collaborators</u> Peter B. Kang (UMN Pediatric Neurologist)

George Aslanidi (UMN/Hormel AAV Vectorologist)

<u>Previous Lab Members</u> Silveli Suzuki-Hatano Skylar Rizzo

US Food and Drug Administration/Center for Biologics Evaluation and Research, Contract/Grant Number: R01 FD007483 (C.A. Pacak co-principal investigator)

Current Pacak Lab Members Audrey Daugherty Ellie Khadir Russell D'Souza Monika Chauhan Sree Venigalla Alexia Hang Frances Sehneah Alexandra Hoffman

